4 research outputs found

    Koopman analysis of the long-term evolution in a turbulent convection cell

    Full text link
    We analyse the long-time evolution of the three-dimensional flow in a closed cubic turbulent Rayleigh-B\'{e}nard convection cell via a Koopman eigenfunction analysis. A data-driven basis derived from diffusion kernels known in machine learning is employed here to represent a regularized generator of the unitary Koopman group in the sense of a Galerkin approximation. The resulting Koopman eigenfunctions can be grouped into subsets in accordance with the discrete symmetries in a cubic box. In particular, a projection of the velocity field onto the first group of eigenfunctions reveals the four stable large-scale circulation (LSC) states in the convection cell. We recapture the preferential circulation rolls in diagonal corners and the short-term switching through roll states parallel to the side faces which have also been seen in other simulations and experiments. The diagonal macroscopic flow states can last as long as a thousand convective free-fall time units. In addition, we find that specific pairs of Koopman eigenfunctions in the secondary subset obey enhanced oscillatory fluctuations for particular stable diagonal states of the LSC. The corresponding velocity field structures, such as corner vortices and swirls in the midplane, are also discussed via spatiotemporal reconstructions.Comment: 32 pages, 9 figures, article in press at Journal of Fluid Mechanic

    Role of critical points of the skin friction field in formation of plumes in thermal convection

    Full text link
    The dynamics in the thin boundary layers of temperature and velocity is the key to a deeper understanding of turbulent transport of heat and momentum in thermal convection. The velocity gradient at the hot and cold plates of a Rayleigh-B\'{e}nard convection cell forms the two-dimensional skin friction field and is related to the formation of thermal plumes in the respective boundary layers. Our analysis is based on a direct numerical simulation of Rayleigh-B\'{e}nard convection in a closed cylindrical cell of aspect ratio Γ=1\Gamma=1 and focused on the critical points of the skin friction field. We identify triplets of critical points, which are composed of two unstable nodes and a saddle between them, as the characteristic building block of the skin friction field. Isolated triplets as well as networks of triplets are detected. The majority of the ridges of line-like thermal plumes coincide with the unstable manifolds of the saddles. From a dynamical Lagrangian perspective, thermal plumes are formed together with an attractive hyperbolic Lagrangian Coherent Structure of the skin friction field. We also discuss the differences from the skin friction field in turbulent channel flows from the perspective of the Poincar\'{e}-Hopf index theorem for two-dimensional vector fields
    corecore